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Periodic solutions of second order differential equation that define oscillations
of a simple pendulum subjected to an external sinusoidal force are considered,
The class of symmetric periodic solutions that satisfy boundary conditions is
determined in the case of small amplitude of the acting force. These solutions
are extended to the region of large amplitudes of the acting force, using num-
erical computations, Branching of obtained solutions is investigated,

1, Periodic oscillations at small amplitudes of
the acting force. Letusconsider the differential equation

2" 4+ psinx = esint (L1

where Z is the unknown function, ¢ is the independent vasiable, and € and p are
parameters, This equation may be considered to be the equation of motion of a simp-
le pendulum subjected to an external sinusoidal force. We seek a periodic solution of
this equation that for ¢ == ( would coincide with the periodic solutions of the corres-
ponding homogeneous equation,

Using the Poincaré method of the small parameter [1] it is possible to show that for
reasonably small |e|and w=~=#( =0,1, ...)Eq (1.1) has aunique 2 -
periodic solution z, (£, e) which analytically depends on e and vanishes for ¢ = Q-
The following relationships are valid for that solution:

z,(t+mn, € = —z,( e, z,(—t e = —z,(,¢€ (L2
T, (t’ "'e) =T (tv e)
The numerical derivation of solution &, reduces to solving for Eq. (1.1) of tie

boundary value problem
z(0) =z (w2) =0 (1.9
Let m and n be relatively prime natural numbers and p > 0. We shall find
the 2mm- periodic solution of Eq. (1. 1), which for ¢ = ( is transformed into 2n
m /- periodic solution of the homogeneous equation. The sought solutions are called
solutions of the m [ n form [2]. We use the methods proposed in [3, 4] for determin-~
ing such solutions, and introduce function z, (£) = 2 arcsin (ksn J/ ut) in which the
module of elliptic functions k is the root of equation 2nK (k) = am} p,20d K (k)
is a complete elliptic integral of the first kind. Function x, (f) is determinate for
B > n?® | m? satisfies Eq. (1.1), and for e = 0 is 2mm / n -periodic.
Let us consider the auxilliary system
2+ psinz = esint — px, (£ + 1)

2nm

(1. 4)

2z (£ + to)dt =0

210
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where x is the unkown function, p is the unknown constant, and ty isan arbitrary
constant, Using the results of [3] it is possible to show that for reasonably small |e]
system (1.4) has the unique 2nm.-periodic with respect to ¢ solution

x =1z, (¢ %, €, p= Py (to, €) (1.5)

whose dependence on e is analytic, and which satisfies conditions Z4 (f, £5, 0) =
Zy (t + to) and p, (t,, 0) = 0. Let ¢, () the root of the so-called bifurcation

uation
= Px (g, €) = 0. (1.6)

Then z (, ) = &, [¢, &, (¢), el is the periodic solution of the m / # form of Eq.
(1.1). The convérse statement is also valid, The determination of periodic solutions
of the m _/n form thus reduces to the determination of roots of Eqgs, (1, b),

Let us point out some of the properties of solutions (1.5). Using the obvious equal-

ities x4 (t + mm_/n) = —z, (t) and sin (¢ + n) = —sinf we can siow that
Ty (47, by, €) = z, (¢, Lo+ n, —e), (L7
T, (t, to+ =, e) = — 1z, (¢, — €)

Palto+ 1, 6) = Py (ty —0), Py (to+T-, €)=y (t0r —e) (D)

Since by virtue of (1.7) x, (f, {o+ 2um / n, &) = z, (, t,, €), hence it is suff-
icient to determine the roots of Eq. (1.6) in the interval 0 < ¢, << 2am / n. Funct-
ion p, (to, €) is periodic of period 27 / n with respectto #, . Sincem and n
are relatively prime natural numbers, there exist integers s; and S, such that

sym 4 s;n =1
Hence 2x / n = 2mms; / n + 21, and in consequence of (1.8)

2
Ps (to + =, 6‘) = Py (fo, €) (1-10)

Using the oddness of functions x, (£) and sin £ it is possible to establish the
relationships

(1.9

Ly (tv — to- e) g (_' ¢ to, 8)1 Py ("‘ Loy e) = — Px (to, e) (1.11)
On the strength of the last of these and of formula (1. 10) Eq. (1. 6) has the trivial roots
t =mr/n (r=201, ... 2m —1) (1.12)
to which correspond periodic solutions of the m / n type
i (1 8) = 2 G 0, 8) (r=0,1, ..., 2m —1) (1.13)
Using formulas (1.7), (1.8), and (1, 11) we obtain the equalities ,
T m (8, €) = 2l (¢ + 51, —¢) (1.19)
— 2 (—t L a8 =20t + a,. o
s =r -+ n (mod 2m), a, = — ars, (mod nm)

where s, is an integer which with some other integer s, satisfies formula (1. 9).
Further analysis of periodic solutions of the m / n type is based on the parity
properties of numbers m and.n . Owing to the relative primality of these numbers
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two cases are possible: 1) both m and 7 are odd, 2) one of these numbers is even,
the other odd, Let us first consider case 1), Using formulas (1. 7) and the oddness of
m and n, we obtain

Tl (¢ + 7im, &) = — 2 (¢, ¢)
hm (8,0 = — 200 (), —€) (s =r + m (mod 2m))

Thus solutions (1.13) are =aim -antiperiodic, Because of (1. 14) it is sufficient for the
derivation of all solutions (1. 13) to determine solutions z{%, and z{7, for e>> 0
which are determined by the boundary conditions z (0) = z* (mm / 2) = 0.
Let now one of the numbers m and n be even, In that case the integers §; and

Sy in (1, 9) can be selected odd. Let us assume that their selection conforms to this,
Owing to the relationship % / n = nms,; / n + ms, , formulas(1.8), and the odd-
ness of numbers §; and S, wehave p, (& -+ %/ n,€) = p, (¢, €). From
which, taking into account (1. 11) we find that in this case Eq, (1. 6) has in addition
to roots (1, 12) the trivial roots

- n(2r 41
B =2&ED 04, 2m—1)
To these roots correspond periodic solutions of the m / n type
i (t,e) =a, (8, T, ¢) (r=0,1,...2m —1) (1.15)
for which the following relationships are valid:

0 (¢, €) = 2l (¢ + n, — )
I (— t + @y, &) = 25 (¢ + @y, ©)

s=r-+ n(mod 2m), a, = — n (2r + 1) s,/ 2 (mod nm)
On the strength of (1. 7), (1.9), and oddness of s, we have
Thim (8, €) = —Thm (t + 718y, €) (1.16)
0. (4, e) = — 20 (t + nsy, €), s=r+ 1 (mod 2m)

Owing to relationships (1. 14) and (1, 6) it is sufficient for the determination of all
solutions (1, 13) to find solution z4), for e > 0 The numerical determination of
that solution reduces to solving the boundary value problem & (0) = z (wm) = 0
for Eq. (1,1). Exactly in the same way for obtaiaing all solutions (1. 15) it is sufficient
to find solution z\),, where 0 < g<<m, (2¢+ 1) s, = — 1 (mod 2m) for
e > 0. That solution is determined by the boundary conditions =" (7t/ 2) = z°
(/2 + num) = 0.

The form of Eq. (1, 1) implies that in addition to periodic solutions z, {1.13) and
(1. 15) that equation has periodic solutions derived from the indicated [equationsusing
the transformation £ — & -+ %, and p — — p. Solutions z, (1.13) and (1. 15)
were obtained above for | ¢ | << 1. By solving the respective boundary value probi-
ems these solutions can be continued in the region of considerable | € | . In t{his way

27 -periodic solutions that coincide for ¢ << 1 with solutions xz,, ()}, i}, 51,
and zi) (r = 0. 1)inregion £ = {e. p: 0<C e<C 10, [ p | < 10} . A brief
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description of results of the described investigation is given below, The method of
computation is that described in [5, 6],

2, 2n-periodic solutions, Letn bean odd integer. Solutionsa:f?}l
and xg/)l determined for | e | <& 1 and p > n? are odd = -antiperiodic functions
of {. The numerical derivation of these solutions reduces to solving the boundary
value problem (1,1), (1,3), It can be shown that any solution of such problem is odd
and m-antiperiodic,

If n iseventhen for |€ | <1 and p > n? the solutions 20, z, 29,

and fﬁ/), exist, and for them the following equalities are valid:

m (2.1)
Bt o) = —al) (¢, o), 2, (—t+ 3 e) =
T
ig;)l (t + o B) (r =0, 1)

0 4, e)=—ald) (t, €), 20, (t+m, &) = — 20 (2, )

The solutions xﬁ"}l and xﬁ}i are determined by the boundary conditions
z(0) = (@) =0 @2

and solutions Z&)y and Z{Y, by the boundary conditions

2z (/2) = 2" 3n/2) = 0 (2.3)

These conditions are also satisfied by solutions , and ng'l)l and :rﬁ,l/)l for odd 7.
It can be shown that any solution of the boundary value problem (1. 1), (2. 2) is odd
and 2n-periodic, and that any solution of the boundary value problem (1. 1), (2. 3)
is 2m -periodic and satisfies the relationship z (— ¢ + n/2) =z (t + n/ 2).

In region E with-e << 1 exists solution z, and eight solutions 1/ n: z{7},
P, 27, and a{} (r = 0, 1). The boundary value problem (1, 13) was solved
for obtaining ,, xgi, and z{},Its solutions in region E which for ¢ << 1 coincide
with solutions z,, z{7}, and :r‘(.?, and are shown in Fig, 1, where the dependence of
the initial velocity z* (0) on e can be seen for various values of y . Note that for
—10 < p <1 and e<€1 there is a single solution z,; for 1<p <9
and € <€ 1 there are three solutions z,, xﬁ‘,’f, and xf}f that satisfy the inequalities
#70, &<z, (0, & <z (0, e),2nd for 9 << B << 10 and & <1 there are
five solutions , xﬁz, and ;;;5’2 (r =0, 1) for which z:./7(0, ) < g (0, €) <
2, (0, &) < 270, ) < zf¥ (0, ).

The dependence of the initial velocity of calculated solutions on parameters e
and p may be specified in the form of surface S in the space (@ = z* (0), e, p).
It should be noted that several values of 2' (0) may correspond to the same values
of eand p. The curvesin Fig.1 represent the intersection of surface S with plan-
es u = const. The orthogonal projection of that surface on the plane (e, p) defines
the subdivision of region E in subregions such that at all points of a single subregion
there is the same number of solutions of the boundary value problem (1.3). The cur-
ves that produce this subdivision are called branching curves, and are shown in Fig.
2 (the meaning of curves y,~ and of other similar notation will be explained later),
The points of surface S at which the plane tangent to it is parallel to the o-axis
are projected on the branching curves, The projection image in any neighborhood of
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P ==

7(0)

Fig. 1 Fig. 2

such points is not one~to-one, All remaining points of S have a neighborhood in
which image is one-to-one. Solutions of the boundary value problem (1. 3) are also
completely determined by the quantity # (% / 2). In the space @=2xz{n/2),e,
p) the dependence of x (n/ 2) on € and P for the derived solutions may be specif-
ied in the form of surface § diffeomorphic of surface S . Below, if this does not
present difficulfies, the solutions which are contmuatmns of solutions xﬁ,,}l, ES{}I, and

z, in the region of large ¢, are denoted by xmh f:ﬁ"ﬁ, and =z, , respectively,
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Solutions :cﬁ',’f and :cf}l) were obtained by solving the boundary value problem

(2.2). The dependence of the initial velocity 2' (0) of these solutions on e for var-
fous values of p are shown in Fig. 3 by solid lines. The solution for which z* (0) >
0 (a: (0) < 0) with e <€ 1is &M and x,,™. Inthe space (&, e, ) surface
corresponds to solutions x(") and xi/) .
Some properties of surfaces S and S’ are indicated below. Let z = X (¢, «,
e 1) be the solution of Eq. (1.1) with initial conditions X (0, &, e, p) = 0 and
X' 0, a, e,p) = . Then, if (a, e, p) &S wehave X" (n, @, &, 1) =
—a; 1f(a e, u) & S’, thenalso (— X' (m, o, e, p), &, W S". If (a, e,
WES, but (a, e, p) &S, then points (a, e, p) and (— X (n, @, e, u),
e, W) lie onsurface S’ on different sides of . One of these points corresponds
to solution zﬁ,i, and the other to solution z(/’ For some e = e, (u) solutions
#  and 2y® merge: xﬁ‘}’l t, e) =z% (t e*) Hence by virtue of (2. 1)
20t + n, e,) = — 2 (¢, e,), andsolution z¥) ?(t, e,) satisfies the boundary
ccmdltzons (1.3). Analysis of calculations shows (cf, Figs. 1 and 3) that surface S’
intersects surface S along the merging line of solutions %) and (). at points
of that line the plane tangent to surface S’ is parallel to the o -axis, The projec~
tion of line § [ S’ on surface (e, p) is the branching of solutions 2§ and z{¥.
Itisshownin Fig. 2 by the curve y;~
Solutions Z,(® and Zx,() were obtained by solving the boundary value problem
(2,3). Dependence of the initial coordinate of these solutions of z (1t / 2) on e is
shown in Fig, 3 by dash lines for several values of p. The solution for which z (n /
2) >0(x(n/2)<<0) with e is z,0 (£,®). Inthespace (&, e,
p) surface §' corresponds to solutions z,,® and Z,()., The properties of §
and S’ are analogous to those of surface S and §’, The pro;ectmn of line §
(1 8" onplane (e, p) is the curve of branching of solutions Z+,(®, Zy® and is
shown in Fig. 2 by curve ;" . Although in the scale selected for Fig. 2 curves p;*
and p,” should merge, they are shown separately for clarity, with curve y,~ saown
in the correct position,

3, Stability of the 2x -periodic solutions, The
variational equation for Eq, (1, 1) is of the form

y 4+ upycosz =0 (3.1

Letin (3.1) z = z (1) be the periodic solution of Eq. (1. 1)such that function
cos z (t) isof period 7, The characteristic equation of (3. 1) is then of the form

pz—-—ZAp‘{"i:O, Azljzryl(T)+y2.(T)I

where y, (¢) and y, (¢) are solutions of Eq. (3. 1) with initial conditions y; (0) =
0 =190 =»p0=0 1 |4 | < 1, the necessary condition of
stability of solution z (#) is satisfied. In that case we say that z (2) isstable in
linear approximation, When | 4 | >> 1 , solution z () is unstable. Throughout
the subsequent analysis stability is understood to mean stability in linear approximat-
ion.

The stability region boundary is specified by the equations 4 = 1 and A= — 1.
For A = 1 Eq. (3.1) has a nontrivial periodic solution of period 7 . If
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k“yx(T) —1 va(T) g -1 %
W  w(@—1|" .
this solution is unique and accurate tothe constant co-factor, If condition (3. 2) is not
satisfied, all solutions of Eq. (3.1) are T -periodic, When 4 = —1 Eq. (3.1) has
a nontrivial T -antiperiodic solution, If

kn?h(T)’Jri v (T)
TN @) v (1) +1

that solution is unique, Otherwise all solutions of Eq, (3. 1) are T -antiperiodic,
Let co0s z (f) be an even function and | A | == 1. Then when conditions (3. 2) or
(8.3) are satisfied, the respective solution of Eq. (3. 1) is either even or odd.

If z (t) is a solution of the boundary value problem (1. 3), then cos z () is an
even gt -periodic function, Hence it is possible to assume 7 = m when investigat-
ing stability of solutions z,, i), 2} (r = 0, 1)  The stability region of these
solutions is represented by sections of surface § bounded by curves along which} A |

= {. We denote these curves by I',;*, T,,,” (m = 1, 2). Along the curve T
(T'm™) Eq. (3.1) has an even (odd) sum -periodic solution, Thus along curves I';*
and I';” wehave 4 = 1 , and along curves I's" and Ty 4 = — 1 . The
construction of curves ', and TI'p,™ reduces to the solution of the following bound-
ary value problems for the system of Egs. (1.1) and (8. 1)

20) =7 () =y O =y (F)=0 @
20 =7 (5) =y =y () =0 ¥
2(0) =2 () =v @ =1y

z0) =2 () =y0) =y (

} =1 (3.3)

(3. 4)

|

|

S

) =0 (Y

) =0 (IY)

M‘{:]

EE

where the symbol in parentheses defines the curve obtained by solving the respective
boundary value problem, We denote, respectively, by v, * and v, the projections
of curves I',;* and T~ on the plane (e, p) . The disposition of curves y,* and

¥m~ in region E appears in Fig.2, Curves v," are absent, The points of inter-
section of curves y;7 with the axis p = O are determined by the equation J, (€)
= (0 where J, (&) is a Bessel function of the first kind of zero order. The subsequ-
ent investigation of curves ;- and y,” emanating from point Po (¢ = 0, p. = 4)
which intersect at point P, (¢ = 6.43, p = 7.17) and for e << 1 are specified
by the equations

B=b+ 5o — e+ 0 (1)

N

Curves +y,", y,~, and 7y,  represent the boundaries of projections of stability
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regions of solutions z,, xf'}), and xﬁ'/)l on the plane (e, w). Projections of these
regions are shown shaded in Fig, 2, Several of the considered solutions exist for some
e and p ., Sections of stability of these solutions are shaded in Fig. 1.
The stability of solutions xf’}’l and zﬁ',’, is analyzed similarly. By virtue of the
last two of formulas (2, 1)

cos 2%, (t + 1, €) = cos P (¢, €), cos 29 (t + ;, €) =
cos 7%, (¢, e)

hence solutions xﬁ'})‘, .7:5}1) (xS‘}),, and fﬁll)l) are at the same time stable or unstable,

The region of stability of solutions xﬁ‘})l, Icﬁl,)l, (:ifs(}),, and zﬁl,),) appear in Fig, 4 hatch-

ed by horizontal (vertical) lines,

4, Branching of 2mx -periodic solutions, Using function
X (¢, o, e, p) from Sect, 2 above we can write the equation of surface S in the
space (o, €, p) inthe form X° (n/ 2, @, e, p) = 0 . The curves on surface §
at points at which the plane tangent to S is parallel to the o -axis are specified by
the equations

X (2, o, e p)=0, 0X'(n/2, a, e, p)da =0 (4. 1)

The projections of these curves on the plane (e, ) are branching curves of the
boundary value problem (1,3). Along curves (4,1) functions z = X (¢, a, e, p)
and y = 8X (¢, ., e, p)/da satisfy the last of conditions (3, 4), hence these branch-
ing curves are the y,~ -curves. It can be shown in the same way that projection of
the line of intersection S and S’ (§, J’) on the plane (e, p) is the curvey,™ (y;1).

Branching of the 2m -periodic solutions of Eq. (1.1) on curves ¥y, is similar
to the branching of the 2n -periodic solutions of the equation considered in [6], and
are not considered here, We shall only analyze the branching of the 27 -periodic
solutions on curves y;* and y,” emanating from point P, . Let point (0ty, €x»
By) lieoncurve T;For T~ and z, (£) = X (!, Oy, €4 Ry)- Then using the
notation

q=x——x*(t), & =€ — &, qu“"”* f(t)=
Ry cOS . (2)

H (g, &, 6) =esint + p, sinz, (t) — (p, + 68) sin [z, 1)+
q] + py g cos z, (t)

Eq. (1. 1) can be written as

"+ @) g=H(gte 0 (4.2)
where

fE+n)=7@), H(gt+n868 =—H(—gqted *3

f@®)=f(—t), H(gte ) =—H(—gq —tce,b? (4.9

Function H (g, t, €, 8) is analytic with respect to ¢, ¢, and 6 at point ¢ =
e= 8=0 and H(q t e 8 =0+ |e|+ |8]). Investigation
of the 2gm -periodic solutions of Eq. (1.1) which for e = ¢, and R = p, are
transformed into solution x, (¢) is equivalent to the investigation of the 2 -period-
ic solutions of Eq. (4. 2) which vanish when &€ = § = (. Such investigation is
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carried out differently depending on the fulfilment of condition (3.2). Calculations
show that that condition is violated only at points P, and P,

Let us consider an arbitrary point of curves y;+ and y,~ different from points
Py and P, . Atsuch point the linearly independent solutions of the equation

w o f (u=0 (4.9

may be written as
u () =u(t)y wBy=u{®)t-+v (4. 8)

wiere u () and v (f) are s ~-periodic functions with u (f) even on curve y,* and
odd on curve y;~ .Let us consider the auxilliary system

27

¢+ Oa=H@ e ) —pu(t), §u@dt=a

]
where ¢ is the unknown function, p the unknown constant, and « is an arbitrary con-
stant, For reasonably small {a |, Je], and || this system has the unique 2a -peri-
odic solution with respect to z [3]

q = qx (t1 a, &, 6)7 P = Py (aq g, 6) (4. 7)

analytically dependent on g, €, and § and satisfying conditions ¢, (% 0,0, 0)= 0,

and py(0, 0, 0) = 0. Determination of the 2x -periodic solutions of Eq. (4. 2) that
vanish for ¢ = § = 0 is equivalent to finding the roots a = a (g, 8) of the equation

3] Pala, &, 8) = 0 (4.8)

such that 2 (0, 0) =0, Let a (g, §) be the root of Eq. (4.8) and « (0, 0)= 0. Then
g = q,lt, a (€, 8),&,8] isa 2m -periodic solution of Eq. (4.2). The characteristic
indices A of that equation are of the form

M2 8 ,0), 8,8
L) N CICL IR RO

27
M= S u(tydt, W =u?4 u'v—uv’ == const
0

where o (1) denotes function of & & that tends to vanish as £—0 and §—0,
and W is the Wronskian of functions (4, 6),

We shall indicate some of the properties of solution (4, 7). Using formulas (4.3)
and the = -periodicity of function u (t) we can show that

ga{t + 1, @, &, 8) = — qult, —a, &, 8), P« (a, 8, 8) = —p« (—a, &, 8) (4.9)
By virtue of (4. 4) and the properties of evenness of function u {t) we have
- (4.10)
ge(l, a, &, 6) = — ¢« (—t, a, 8, 8), (Cns €xs H*) eIy
gs (4, @, &, 8) = —gqy (—1, —a, & 8), (g &4y pa) € it (4.11)

1t follows from (4, 9) that p, (e, &, 8) = a9 (a2, &, §), where ¢ (z, &, 6? is an anal-
ytic function of z, €, 8 atpoint z=¢g=6=10,9(0,0,0)= 0. Equation (4. 8)has
the trivial solution & = 0 to which corresponds the odd = -antiperiodic (cf. (4.9)—
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(4, 11) solution of Eq, (4.2) go(t: & 8) = g4(t, 0, &, §) that satisfies the condition

(#©0) + ¢0'(0, &, 8)s ey + B pe +8) = 8 (4.12)
For a0 Eq, (4.8) becomes
¢ (% e, 8) =0 (4.13)

Let us represent function ¢ (z, g, §) in the form ¢ (z, &, 8) = Qg2 + Pg308 + Pomd
-+ O (z® 4 &® -+ §%). Calculations show that at all points of curves 7,¥ and 7y
(including points Py, and P; )} @ + @02 >0, Pro0 5+ 0. For fairly small |a
I» 1€l,and |4, by the theorem on implicit function Eq. (4, 13) is equivalent to the
equation a® = h (¢, §) (4.14)
where & (8, 8) = — Q07 (o108 + Po0:d) -+ O (€2 + 8%) is an analytic function of e,
6 atpoint e=8§=0. Since g2+ g2 >0 , hence point e=08=0 isnot
a singular point of curve h (e, 8) = 0. In region {e, &:k (g, §) > 0} Eq. (4.14) has
two real roots a, (g, 8) = [k (e, 8)]"/* and ay(e, 8) = —a; (¢, 8) to which correspond
solutions ¢y (¢, &, 6) = gy [2, a5 (e, 8), &, 8] (j = 1, 2) which are linked by the relat~
ionship g, (f, &, 8) = — ¢ (t + n, &, §).

If (04 4 py) & Iy, then g; (¢, & 8) = — 93 (—t, 8 8 and

@ O+ 4, (0,8,8), 46 pp+8 =8 (=1,2
If (ay ex, py) =Ty*, then g;(—t-+n/2,e 8 =g;(t+n/2 ¢ 8 and

It fid .
(x*(7)+qi(_2"8’5): 6*4-8,9*—{—6)(—38’ (=12
The characteristic indices of solutions ¢4, ¢;, and g, are of the form

M2
S h(e, )1+ o ()] (10)

Mgy,
22 =—n“’w}—°—h(e, NMi-+oM)] (1,95

A e

This implies that the curve y;* or y,- in the plane (e, 8) is defined by the

equation & (e, §) = 0, and is the boundary of the stability region of solution g,
and the branching curve of solutions ¢, and ¢, . Along that curve g, = ¢, = ¢,.
Solutions ¢; and ¢, can be stable or unstable, When they are stable (unstable),
then in the region of existence of these solutions solution ¢, is unstable (stable),
The Wronskian of functions (6. 6) passes at point Py through infinity and changes its
sign, The obtained results make it possible to check the numerical investigation of
stability of solutions z;, xﬁ’,’f, fﬁﬁ (r=0,1) in the vicinity of curves y* and ;-
(cf, the position of shaded regions in Figs., 2, 4, and 5).

We shall now investigate the branching of the 2x -periodic solutions in the neighw
borhood of points P, and P; at which the linearly independent solutions z; (#} and
up () of Eq. (4.5) are = -periodic. Let us assume that u, (f) is even and u, (2) odd,
and consider the auxilliary system

9"+ () g=H(g ¢t & 8 — pyuy (t) — paus (1)
2% n

S uy () gdt = a,, S uy (t) gdt = ay
0 0
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where ¢ is the unknown function, p, and pg the unknown constants, and 4, and
a, are arbitrary constants, For reasonably small layl, laxl,1e], and | & this

gvetem hag the unigue 9. wmeriadic with rosmant ta b calitio rad

7 - S win(es &I Tl Wil [ESpECl W0« SO1toN |5

g = Gy (8, a5, a5, &, §) (4. 15)

P1 == pi* (ay, ag, & B), py = py* (a;, 4y, &, §)
which analytically depends of ¢y, a,, 5, 8 and satisfies conditions 7 (4,0,0,0,0) =
0, and p;*(0,0,0,0) =0 (j = 1, 2). The determinations of the 2z ~periodic sol-
utions of Eq, (4, 2) which vanish for ¢ = 8§ = 0 is similar to the determination of
1o0ts g, = a, (¢, 8) and 4, = g, (e, §) of system [3]
p1* (33, 4y, 8, 8) = 0, py* (ay, a5, 8, 8) =0 (4. 16)

such that a, (0, 0) = a, (0, 0) = 0.
The following relationships:

Eﬂl (t + R,y 4y, dg, &, 6) = - §=|= (2, — @, —— &y, &, 6) (4' 17)
Tu (8, 85, 03,8, 8) = — Gy (—1, — ay, 2, €, 8)

Pj* (ay, ag, &, §) = — pj* {(—a, —ay 8 6) (i=1,2)

pl‘ (a.‘n 4, &, 6) = pl* (—' 24, 43, &, 6)

Pa* (21y @y, &, 8) = p.* (— ay, ay, &, 8)

whose proof is similar to that of formulas (4. 9) — (4. 11), are valid for  solutions
(4.15), By virtue of (4.17)

Pj* (61, ay, 8, 8) = a;9; (a% 2%, &, 8) (j =1, 2)
where @; (2, 2,, &, §) are analytic functions of z;, 25, £, § atpoint zy =z, = ¢ =
8 =0, and ¢;(0,0,0,0) = 0. System (4, 16) has the trivial roots a; = a; = 0
to which corresponds the odd  n -antiperiodic solution of Eq. (4.2) g, (¢, &, §) = G«
(t, 0,0,2,8) which satisfies condition (4. 12),

At point P, we have z, (1) =0 and H (g, t -+ =, 8,8 = H(q, t, —e&, 8. By
virtue of the last equality G, (z -+ =, a5, a3, &, 8) = @4 (t, a1, 25, — &, §) and, consequ-
ently, qo (¢, 2, 8) = — g (t, — & 8), g (¢,0,08) = 0. Thus g,=z, for § 0.
Solution g, is the continuation of solution =z, to the removable singular point P,.

Without presenting the general analysis of system (4, 16) we shall indicate its roots
which correspond to solutions z{}) and z{) (r = 0,1). For a; =a=0and a; =0
that system is transformed into the equation

P (a2 0,8,8) =0 (4,18)

and function g¢,(t, a, &, 8) = T, (1, a, 0, €, §) satisfies formula (4. 11) by virtue of (4. 17).
Similarly system (4, 16) is transformed for a, = 0 and ¢, = a = 0 into the equation

93 (0, 8% ¢,8) =0 (4. 19)

and equality (4.10) holds for function g, (¢, #, &, O)=Gy (¢, 0, a, &, 8) . In these cases
the branching of periodic solutions is similar to the branching of periodic solutions at
points of curves v+ and y,” not coincident with points P, and P,. Solutions
of Eq. (1.1) that correspond to roots of Egs. (4. 18) and (4. 19) are, respectively, the
solutions z{), xiyz.

Above, we have investigated curves y,* and vy,” emanating from point P,
It can be similarly shown that the remaining curves v;* (Fig, 2) are branching curves
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of the 2x -periodic solutions of Eq. (1.1) whose numerical determination reduces
to solving the boundary value problem (2, 3) which has no solution for ¢ <€ 1.
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