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Periodic solutions of second order differential equation that define oscillations 

of a Simple pendulum subjected to an external sinusoidal force are considered, 
The class of symmetric periodic solutions that satisfy boundary conditions is 

determined in the case of small amplitude of the acting force. These solutions 

are extended to the region of large amplitudes of the acting force, using num- 
erical computations. Branching of obtained solutions is investigated. 

1. Periodic oscillations at small amplitudes of 
the acting force. Let us consider the differential equation 

I’ + p sin z = e sin t (1. 1) 

where II: is the unknown function, t is the independent variable, and e and p. are 
parameters. This equation may be considered to be the equation of motion of a simp- 

le pendulum subjected to an external sinusoidal force, We seek a periodic solution of 
this equation that for e = 0 would coincide with the periodic solutions of the corres- 
ponding homogeneous equation. 

Using the PoincarC method of the small parameter [l] it is possible to show that for 

reasonably small 1 e 1 and p # 1’ (I = 0, 1, . . .) Eq. (1.1) has a unique 2n - 
periodic solution x, (t, e) which analytically depends on e and vanisnes for e = 0. 
The following relationships are valid for that solutron: 

5, (t + 3-c, e) = - 5, (t, e), x, (-4 e) = -5, (4 e) ( 1. 2) 

5, (t, -e) = - 5, (t, e) 

The numerical derivation of solution 3c, reduces to solving for Eq. (1. 1) of me 

boundary value problem 
2 (0) = z’ (n/2) = 0 (1.3) 

Let m and n be relatively prime natural numbers and p > 0. We shall find 
the 2nm- periodic solution of Eq, (1. l), which for e = 0 is transformed into 23~ 

m/n-periodic solution of the homogeneous equation. The sought solutions are called 

solutions of the n / n form [Z]. We use the methods proposed in C3.43 for determin- 
ing such solutions, and introduce function x,, (t) = 2 arcsin (k sn f/ILt) in which the 
module of elliptic functions k is the root of equation 2nK (k) = am 1/ pL, and K (k) 
is a complete elliptic integral of the first kind. Function x0 (t) is determinate for 

p > n2 / ma, satisfies Eq. (1. l), and for e = 0 is km / n -periodic. 

Let us consider the auxilliary system 

2” + p sin x = e sin t - pz,’ (t + to) (1.4) 

sxm 

s 250 (t + tO)dt = 0 

0 
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where x is the unkown function, p is the unknown constant, and to is an arbitrary 

constant. Using the results of [3] it is possible to show that for re~onably small 1 e 1 
system (1.4) has the unique &m-periodic with respect to t solution 

X = X* (t, tot @), p = p* (to, e) (1. 5) 

whose dependence on e is analytic, and which satisfies conditions X* (t, to, 0) = 
~0 (t f 4)) and p* (t,, 0) = 0. Let to (e) the root of the so-called bifurcation 
equation 

P* (to, 4 = 0. (1.6) 

Then X (t, e) = X* It, ;C, (e), ej is the periodic solution of the M / n form of Eq. 

(1. I). The con&se statement is also valid. The determination of periodic solutions 
of the m/n form thus reduces to the determination of roots of Eqs. (1.6). 

Let us point out some of the properties of solutions (1.5). Using the obvious equal- 
ities X0 (t + ZWZ/?r) = -x0 (t) and sin (t f n) = -sint we can show that 

Xe (t A- fi, to, 4 = 2, ft, t0 + fi, - 3, 
(1,7) 

x* ( t, to + T , e) = - s* (t, to, - e) 

P* UO + 31, 4 = p* VO, -4, p*(t0+~,e)=p,(t0,--4 (1*8) 

Since by virtue of (1.7) X* (i?, i a+ 2nm / n, e} = X* (t, to, e), hence it is suff- 

icient to determine the roots of Eq. (1.6) in the interval 0 < to < &m / n. Funct- 
ionp* (to, e) is periodic of period 23~ / n with respect to to . Since M and n 
are relatively prime natural numbers, there exist integers s1 and s2 such that 

s,m + Ssrt = 1 (1,s) 

Hence 2n / n = 2n?n.s, / n $- 23CSs and in consequence of (1.8) 

P* (to + + , e) = p* (to, 4 
(1.10) 

Using the oddness of functions x0 (t) and sin t it is possible to establish the 
relationships 

X* (t* -tto. e) = - X* (- t, to, e), p* (- to, e) = - P* (to, 4 (10 11) 

On the strength of the last of these and of formula (1.10) Eq. (1.6) has the trivial roots 

to(r) = nrln 0” = 0, 1, . . ., 2m - I) (1.12) 

to which correspond periodic solutions of the m / n type 

x.$~ (t, e) = X* (t, to(‘), e) (f = 0, 1, . . ., 2m - 1) (I. 13) 

Using formulas (1. ‘I), (1.81, and (1.11) we obtain the equalities 

~$1~ (t, e) = x$& (t + n, - e) (1.14) 

- X$i (- r + a,, e) = XC& (t + a,, e) 

s = r + n (mod 2m), a, = - nrs, (mod nm) 

where S, is an integer which with some other integer sr satisfies formula (1.9). 
Further analysis of periodic solutions of the m / n type is based on the parity 

properties of numbers m and. n . Owing to the relative primality of these numbers 
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two cases are possible: 1) both m and n are odd, 2) one of these numbers is even, 
the other odd. Let us first consider case 1). Using formulas (1.7) and the oddness of 
m and n, we obtain 

x$k (t + rem, e) = -x$& (t, 

xgjm (t, e) = - 3$/m (8, - e) 

Thus solutions (1.13) are sm -antiperiodic. 

4 

(s = r i- m (mod 2m)) 

Because of (1.14) it is sufficient for the 
derivation of all solutions (1.13) to determine solutions IL$$ and &?A for e > 0 

which are determined by the boundary conditions z (0) - X* (nm / 2) = 0. 
Let now one of the numbers m and n be even. In that case the integers S1 and 

Ss in (1.9) can be selected odd. Let us assnme that their selection conforms to this. 
Owing to the relationship 3t / n = nmsl I n f ES% , formulas (1.81, and the odd- 

ness of numbers al and a2 we have p* (to -I- 3t f n, e) = p* (to, e). From 
which, taking into account (1. 11) we find that in this case Eq. (1.6) has in addition 

to roots (1.12) the trivial roots 

&(r) = 31 @r + 1) 
2n (7. = 0, 1. ,...,2m-$1) 

To these roots correspond periodic solutions of the m / n type 

&A (t, e) = 5* (t, It’, e) (t = 0, 1,. . , ,2m - 1) 

for which the following relationships are valid: 

2$ (t, e) = rt$& (t + TI, - e) 

&II (- t f- ii,, e) = z$jm (t + f!&., e) 

s=r+n(mod 2m), ii,= -n(2r+l)ss/2(modrcm) 

(1.15) 

On the strength of (1.71, (1. Q), and oddness of ss we have 

$+ (k e) = --a$jm (t + =,, e) (1.16) 

g$)n (t, e) = - z$& (t + ns,, e), s = r + 1 (mod 2m) 

Owing to relationships (1.14) and (1. 6) it is sufficient for the determination of all 

solutions (1.13) to find solution x:/k for e > 0 The numerical determination of 

that solution reduces to solving the boundary value problem 5 (0) = x (nm) = 0 
for Eq. (1.1). Exactly in the same way for obtaining all solutions (1.15) it is sufficient 

to find solution z:yi, where 0 \( 4 < m, (2q .+ 1) SS =7 - 1 (mod 2m) for 

e > 0‘ That solution is determined by the boundary conditions 5’ (n / 2) = 5’ 
(n / 2 + nm) = 0. 

The form of Eq. (1.1) implies that in addition to periodic solutions 5, ( 1.13) and 

(1.15) that equation has periodic solutions derived from the indicated [equatiOnSfuSing 

the transformation x + J: i- rc, and p 3 - p_ Solutions X, (1.13) and (1.15) 

were obtained above for 1 e 1 < 1. By solving the respective boundary value probl- 
ems these solutions can be continued in the region of considerable 1 e 1 . In this way 
231, -periodic solutions that coincide for e < 1 with ~01uti0n~ x,, x$!, x$1, z$:, 

and x$ (r = 0, 1) in region E = {e, p: 0 < e < 10, 1 p 1 < 10) . A brief 



description of results of the described investigation is given below. The method of 

computation is that described in [5,6]. 

2. 2nIperiodic s o 1 u t i o n EL. Let n be an odd integer. Solutions X$ 
and X$ determined for 1 e 1 < 1 and ~1 > n2 are odd n -antiperiodic functions 

of t. The numerical derivation of these solutions reduces to solving the boundary 
value problem (1.11, (1.3). It can be shown that any solution of such problem is odd 

and 3t - antiperiodic. 

If rz is even then for 1 e 1 < II and p > ns the solutions X$X+ 
and 3:/r exist, and for them the following equalities are valid: 

s$, $$\, 

(2.1) 

q1 (t + 36, e) = - x$ (t, e>, 2fjl(t + 3t, e) = - +$‘,,(t, e) 

The solutions s$?~ and 8) n s,1 are dete~ined by the boundary conditions 

x (0) =: x (n) = 0 (2.2) 

and solutions Z$r and Z$$jr by the boundary conditions 

2’ (x/2) = x* (3d2) = 0 (2.3) 

These conditions are also satisfied by solutions 2, and $,?r and x$ for odd n. 
It can be shown that any solution of the boundary value problem (1.11, (2.2) is odd 

and 2n -periodic, and that any solution of the boundary value problem (1.11, (2. 3) 
is 2n -periodic and satisfies the relationship x {- t f- n I 2) = x (t + n / 2). 

In region E with, e < 1 exists solution xz and eight solutions 

A;!, ~6:~ and xc! (r = 0, 
1 / n: xzi, 

1). The boundary value problem ( 1.13) was solved 
for obtaining xz, XT:, and ;c”/ . (‘1 Its solutions in region E which for e < 1 coincide 

with solutions tz, x$!, and +, ‘(7, and are shown in Fig. 1, where the dependence of 

the initial velocity x’ (0) 

-lO\<P<l 

on e can be seen for various values of p . Note that for 
and e < 1 there is a single solution x,; for 

and e < 1 there are three solutions x2, 
l<p<9 

a& (0, 4 < G* (0, e) C z$) (0, 

x!?:, and X$ that satisfy the inequalities 

five solutions xz, xc!, 
e , and for 9 < p < 30 and e (( 1 there are ) 

and z$), fr = 0, 1) for which &f’(O, e) < x$& (0, e) < 

xz+ (0, e) < x~~~0, e) < $jff (0, e)* 
The dependence of the initial velocity of calculated solutions on parameters e 

and p may be specified in the form of surface &’ in the space (a = x* (O), e, p). 

It should be noted that several values of rc’ (0) may correspond to the same values 
of eand p. The curves in Fig, 1 represent the intersection of surface s withplan- 
es ~1 = con&. Th e orthogonal projection of that surface on the plane (e, p) defines 
the subdivision of region ,$ in subregions such that at all points of a single subregion 
there is the same number of solutions of the boundary value problem (1.3). The cur- 
ves that produce this subdivision are called branching curves, and are shown in Fig, 
2 (the meaning of curves ys- and of other similar notation will be explained later). 
The points of surface s at which the plane tangent to it is parallel to the a-axis 
are projected on the branching curves. The projection image in any neigh~orh~d of 
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Fig. 1 Fig. 2 

such points is riot one-to-one. Ail remaining points of 5 have a ~eig~borbood in 
which image is one-to-one. Solutions of the boundary v&e problem (1.3) are also 

completely determined by the quantity X (Z f 2). In the space (5, = x (n 1’ 21, e, 
p) the dependence of X (n / 2) on f? and p for the deri&d solutions ma) be specif- 

ied in the form of surface s diffeomo~~c of surface s , Below, if this does not 
present difficulties, the solutions which are continuations of solutions X$& s$$, and 
x, in the region of large e, are denoted by X$, && and I%, I respectively. 

Fig. 3 

4 
0 u 

Fig. 4 
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Solutions ~$7: and a@ were obtained by solving the boundary value problem 

(2.2). The dependence of the initial velocity 5’ (0) of these solutions on e for var- 
ious values of l,k are shown in Fig. 3 by solid lines. The solution for which 5’ (0) > 
0 (cc’ (0) ( 0) ‘with e < 1 is q,(O) and ~*,$(~j. In the space (a, e, p) surface 

S’ corresponds to solutions ~$7: and xi;! . 

Some properties of surfaces 8 and 8’ are indicated below, Let x = X (t, a, 
e, p) be the solution of Eq. (1.1) with initial conditions X (0, a, 
X’ (0, a, e, p) = a. 

e, p) = 0 and 

Then, if (a, e, p) cz S we have X’ (n, a,,e, p) = 
- a; if (a, e, p) e S', then also (- X’ (n, a, e, p), e, p) E S’. If (a, e, 

Al) czz S’, but (a, e, p) CE S, then points (a, e, p) and (- X’ (n, a, e, p), 
e, p) lie on surface S’ on different sides of S. 

to solution z!yi, 
XI:; 

and the other to solution z!f’ 

One of these points corresponds 

and z,,!‘l merge: ~$7: (t, e*) 
'il, 

For some e = e, (p) solutions 

3A~~ (t + n, e*) = - xkf 

= 5~1~ (t, e*). Hence by virtue of (2,1) 

(t, e,), and solution z# (t, e,) satisfies the boundary 

conditions (1.3). Analysis of calculations shows (cf. Figs. 1 and 3) that surface S’ 
intersects surface S along the merging line of solutions ;c!Y{ and (x~~~). At points 

of that line the plane tangent to surface 5” is parallel to the a -axis. The proj ec- 

tion of line S fl S’ on surface (e, p) is the branching of solutions X$ and &c!fi. 

It isshownin Fig. 2 by the curve ri- . 

Solutions %,1(*) and %,(rj were obtained by solving the boundary value problem 

(2.3). Dependence of the initial coordinate of these solutions of x (n / 2) on e is 

shown in Fig. 3 by dash lines for several values of ~1. The solution for which x (n / 

2) > 0 (x (n / 2) < 0) with e (( 1 is %,!r) (z*,,C*j) . In the space (a, e, 

p) surface s’, corresponds to solutions ~~,;lr(of and &jr). The properties of 3 

and s’ are analogous to those of surface S and S’. The projection of line S 

R sr on plane (e, p) is the curve of branching of solutions %,$*f, Zs,Pj and is 
shown in Fig. 2 by curve yr+ . Although in the scale selected for Fig. 2 curves yr+ 
and yr- should merge, they are shown separately for clarity, with curve yr- sllown 

in the correct position. 

3. Stability of the 2n -periodic solutions, The 
variational equation .kr Eq. (I., 1) is of the form 

y” + py cos 5 = 0 (3.1) 

Let in (3.1) x - x (t) be the periodic solution of Eq. (1.1) such that function 
cos x (t) is of period T, The characteristic equation of (3.1) is then of the form 

P” - 2Ap + 1 = 0, A = l/s I& (T) + y; (T)f 
where y, (t) and ~JI (t) are solutions of Eq. (3.1) with initial conditions yl (0) = 
Ys’ (0) = 1, Y,’ (0) = $8 (0) = 0. If 1 A I< 1, the necessary condition of 
stability of solution x (t) is satisfied. In that case we say that x (t) is stable in 
linear approximation. When 1 A I > 1 , solution x (t) is unstable. Throughout 
the subsequent analysis stability is understood to mean stability in linear approximat- 
ion. 

The stability region boundary is specified by the equations A = 1 and A= - 1. 
For A = 1 Eq. (3.1) has a nontrivial periodic solution of period T . If 
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rank Ylco----1 II ~1‘ V’) 
1 (3.2) 

this solution is unique and accurate to the constant co-factor. If condition (3.2) is not 
satisfied, all solutions of Eq. (3.1) are T-periodic. When A = --1 4. (3. I.1 has 
a nontrivial T -antiperiodic soiution. If 

rank Y,(T) + 1 H Y,’ G”) 
I (3.3) 

that solution is unique. Otherwise all solutions of Eq. (3. I) are T -antiperiodic, 
Let cos 2 (t) be an even function and 1 A 1 = 1. Then when conditions (3.2) or 

(3.3) are satisfied, the respective solution of Eq. (3.1) is either even or odd. 
If 3 (t) is a solution of the boundary value problem (1.31, then cos x (t) is an 

even rr -periodic function. Hence it is possible to assume T = az when investigat- 
ing stability of solutions x2, a~$,‘, ;F!/‘: (r = 0, 1) The stability region of these 
solutions is represented by sections of surface S bounded, by curves along which] A 1 
= 1. We denote these curves by r,+, I’,- (m = 1, 2). Along the curve r,* 

(r,-) IQ. (3. I) has an even (odd) 3tn2 -periodic solution, Thus along curves I?,+ 
and ri- we have A = 1 , and along curves rs+ and rs- A = - 1 , The 
construction of curves r,$” and pm” reduces to the solution of the following bound- 
ary value problems for the system of Eqs. (1.1) and (3, U: 

3c (0) = 5’ ($ f y’(0) = y’ (T) = 0 (I-r+) 

.(o,=q+) =y(o)=Y(+) =o p-1-1 

3c (0) = 2’ (+) = y. (0) = y (-p) = 0 (r,+) 

(3.4) 

t(O) = 5’ (+) = y (0) = y* (+f = 0 (r2-) 

where the symbol in parentheses defines the curve obtained by solving the respective 
boundary value problem. We denote, respectively, by ym* and Ye- the projections 

of curves r,+ and rrn- on the plane (e, p) . The disposition of curves ?mf and 
Ye- in region E appears in Fig. 2. Curves ya+ are absent, The points of inter- 

section of curves yr+ with the axis p = 0 are determined by the equation Jo (e) 

= 0 where JQ (e) is a Bessel function of the first kind of zero order, The subsequ- 

ent investigation of curves rr& and yr- emanating from point Pa (e = 0, p = 4) 
which intersect at point PI (e = 6.43, p = 7.17) and for e (( 1 are specified 

by the equations 

P=4+ $ea - &et + 0 (es) (yl+) 

1 59 
~=4+-i=j-ee2-- 38880 - e* + 0 (4 (yl-) 

Curve6 yl*, yl-, and y2- represent the boundaries of projections of stability 
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regions of solutions x2, A;’ and &,), on the plane (e, p) , Projections of these 

regions are shown shaded inBig. 2. Several of the considered solutions exist for some 

e and p. Sections of stability of these solutions are shaded in Fig. 1. 

The stability of solutions z$ and 2!;j1 is analyzed similarly. By virtue of the 
last two of formulas (2.1) 

co.9 A”/~ (t + rc, e) = co.9 xI’f{ (t, e), cos do/‘, (t + n, e) = 

cos zi’/‘l (t, e) 

hence solutions a$?,, z!fj (z$‘,, and Z$jl) are at the same time stable or unstable. 

The region of stability of solutions x$‘~, $jl, (z!~‘,, and z$‘~) appear in Fig. 4 hatch- 
ed by horizontal (vertical) lines. 

4. Branching of 2~r -periodic solutions. Usingiimction 
X (t, a, e, p) from Sect. 2 above we can write the equation of surface S in the 

space (CC, e, p) in the form x’ (n / 2, a, e, p) = 0 . The curves on surface 8 

at points at which the plane tangent to s is parallel to the cc -axis are specified by 
the equations 

X’(n12, a, e, p) = 0, dX’(n/2, a, e, p)/ih = 0 (4.1) 

The projections of these curves on the plane (e, p) are branching curves of the 
boundary value problem (1.3). Along curves (4.1) functions 5 = X (G a, e, P) 
and y = 6X (t, a, e, p)/&c satisfy the last of conditions (3.4). hence these branch- 
ing curves are the ys- -curves. It can be shown in the same way that projection of 
the line of intersection S and 8’ (3, sl) on the plane (e, p) is the curveyr- (y;t). 

Branching of the 2n -periodic solutions of Eq. (1.1) on curves ys- is similar 
to the branching of the 2n -periodic solutions of the equation considered in [S], and 
are not considered here. We shall only analyze the branching of the 2n -periodic 
solutions on curves rr+ and yr- emanating from point PO . Let point (a,, c*, 
I+) lie on curve I’,+ or I’,- ‘and z* (t) = X (t, a,, e,, p*). Then using the 

notation 

Q = 5 - z* (t), e = e - e,, 6 = p - p* f (t) = 

p* con t* (0 

H (q, t, E, 6) = E sin t + p* sin x* (t) - (p* + 6) sin Lx* (t)+ 

91 + CL* Q cos x* (G 

Eq. (1.1) can be written as 

CT + f (t) q = H (q, r, E, 6) (4.2) 

where 

f (t + n) = f (t), H (q, t + 3t, e, 6) = - H (- q, t, E, d) (4* 3, 

f (t) = f (- t), H (q, t, 8, 6) = - H(- q, - t, E, 6) (4.4) 

Function H (9, t, e, 6) is analytic with respect to q, E, and 6 at point q = 
E = 6 = 0, and H (q, t, E, 6) = 0 (q” -k I E I -j- 1 6 I). Investigation 
of' the k -periodic solutions of F.q. (1.1) which for e = e, and p = pL* are 
transformed into solution z* (t) is equivalent to the investigation of the 2n -pertod- 
ic solutions of Eq. (4.2) which vanish when e = 6 = 0 , Such investigation is 
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carried out differently depending on the fulfilment of condition (3.2). Calculations 
show that that condition is violated only at points P, and P,. 

Let US consider an arbitrary point of curves yr+ and yl- different from points 
PO and P, . At such point the linearly independent solutions of the equation 

u” f f (t) u = 0 (4,5) 

may be written as 

ui (t) = u (t), ua (t) = u (t) t + v (8) (4.6) 

where u (t) and u (t) are n-periodic functions with u (t) even on curve yr+ and 
odd on curve yl- .Let us consider the auxilliary system 

2lr 

4” + f 0) P = H (q, t, a, 8) - P (% Ij u 0) @t = fJ 
0 

where q is the unknown function, p the unknown constant, and a is an arbitrary con- 

stant. For reasonably small 1 a 1, I E 1, and 16 1 this system has the unique 2n -peri- 

odic solution with respect to t [3] 

4 = q* (t, a, e, 8), P = p* (u, 6, 6) (4.7) 

analytically dependent on a, E, and 6 and satisfying conditions q* (t, 0, 0, 01 = 0, 
and ~~(0, 0, 0) = 0. Determination of the 2rc -periodic solutions of Eq. (4.2) that 
vanish for e = 6 = o is equivalent to finding the roots a = u (8, 6) of the equation 

r31 P*(% 8, 6) = 0 (4.8) 

such that a (0, 0) = 0. Let a (8, 8) be the root of Eq. (4.8) and a (0, 0) = 0. Then 

q = q& a (8, 8), E, 61 is a 2n -periodic solution of I$ (4.2). The characteristic 
indices h of that equation are of the form 

2x 

M== s ua (t) dt, W = 79 + u‘v - uv’ = con& 

0 

where o (1) denotes function of a, 6 that tends to vanish as e -0 and & --P 0 , 

and W is the Wronskian of functions (4.6). 

We shall indicate some of the properties of solution (4.7). Using formulas (4.3) 

and the TL -periodicity of function u (t) we can show that 

q*(t + n, a, E, 6) = - q*(t, ---a, e, 81, p* ia, 8, 6) = -p* (-a7 8~ W (4.9) 

By virtue of (4.4) and the properties of evenness of function u (t) we have 
(4.10) 

q*(t, a, E, 6) = - 9* (--t, a, e, 8), (a,, e*, tk) = Ia- 

q* (f, % E, 6) = -q* (-t, -a, E, 6), (a,, e,, t.b) E rl+ (4.11) 

It follows from (4.9) that p* (a, E, 6) = acp (aa, E, a), where cp (z, e, 6) is an anal- 
ytic function of 2, E, 6 at point zze=~=O,tp(O,O,O)=o. Equation(4.8)has 

the trivial solution u = 0 to which corresponds the odd z -antiperiodic (Cf. (4. Q)- 
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(4.11) solution of Eq, (4.2) q&, a, 6) = q&t, 0, e, 8) that satisfies the condition 

(z,‘(O) + Qo’(O* E, 6), e* + a? pL* + 6) E s (4.12) 

For a + 0 Eq. (4,8) becomes 

cp (as, e, S) = 0 (4.13) 

Let us represent function rp (2, e, 6) in the form cp (2, a, S) = ‘plog f iqoute + rp,,# 

f 0 (2s + as + q. Calarlations show that at all points of curves rf and vi- 

(including points P, and P, ) ‘polo” + qooxs > 0, ~100 # 0. For fairly small 1 a 
I, I 8 l,and 16 I, by the theorem on implicit function Eq. (4.13) is equivalent to the 
equation 

Us = h (E, 6) (4.14) 

where h (E, 8) = -~Ioo-l (cporos + qooIG) + 0 (9 + 8%) is an analytic function of B, 
6 at point e = 6 = 0. Since rpolos + ‘poor2 > o , hence point e = 6 = 0 is not 

a singular point of curve h (e, 6) = 0. In region {a, 6 : h (E, 6) > 0) Fq, (4.14) has 

two real roots ~(a, 8) = [h (a, @I” and as(e, 8) = -(I~ (E, 6) to which correspond 

solutions qj (t, E, 6) = q* [E, aj (e, Q, e, S] (j = 1, 2) which are linked by the relat- 

ionship 4% (f, 8, 6) = - qx (t + 3x, B, 6). 
If (a*, % !%f E % thea qj (t, E, 6) = - qf (- t, e, 6) and 

(5*’ (O) + 9j' (09 E7 6)~ e* + 8, p* + 6) E S' (i = 1, 2) 

If (a*, %l p*) E Ill+, then qj (- t $ n / 2, e, 6) = qj (t + n / 2, e, 8) and 

The characteristic indices of solutions q,,, qlr and qa are of the form 

This implies that the curve yIf or yl- in the plane (a, 6) is defined by the 

equation h (8, 6) = 0, and is the boundary of the stability region of solution q. 

and the branching curve of solutions q1 and 4% . Along that curve qa = q1 = qa. 

Solutions q1 and qs can be stable or unstable, -When they are stable (unstable), 
then in the region of existence of these solutions solution q. is unstable (stable). 
The Wronskian of functions (6.6) passes at point PI through infinity and changes its 
sign. The obtained results make it po&ble to check the numerical investigation of 

stability of solutions z,, .z,,~, fr) z$! (r = 0,1) in the vicinity of curves yl+ and yr- 

(cf. the position of shaded regions in Figs. 2, 4, and 5). 
We shall now investigate the branching of the 2n -periodic solutions in the neigh- 

borhood of points PO and PI at which the linearly independent solutions r+ (t) and 
us (t) of Eq. (4.5) are n -periodic. Let us assume that ul. (t) is even and us (t) odd, 
and consider the auxtlliary system 

Q” + f (t) q = H (9, t, a, 6) - PlU, (t) - P$+, (t) 
2az 2s 

s %P) qdt = Ql, 
s 

%(t)@t= a, 

0 0 
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where q is the unknown function, p1 and pa the unknown constants, and aI and 
a2 are arbitrary constants. For reasonably small 1 al I, 1 a2 1, I E I, and I 8 1 this 

system has the unique 2n -periodic with respect to 1 solution [a] 

4 = ii* (t, al, a,, 8, 6) (4.15) 

Pl = PI* (%, % e, 61, Pa = p2* (al, %, e, 8) 

which analYtiCaUY depends of % a,, a, 6 and satisfies conditions & (b, 0, 0, 0, 0) = 
9, and pf+ (0, 0, 0, 0) = 0 (j = 1, 2). The determinations of the 2% -periodic sol- 

utions of &. (4.2) which vanish for a = 8 = 0 is similar to the determination of 
roots al= ~1 (a, 6) and aa = aa (a, 6) of system [s] 

PI* (aI, as, a, 6) = 0, Pa* (@I, $7 8, 6) = 0 (4,161 

such that a, (0, 0) = aa (0, 0) = 0. 

The following relationships: 

?* (t + % al, % a, 6) = - $* (t, - a,, - as, E, 6) 

b 0, al, aa, e, 6) = - ii* (-t, - a,, %, 8, S) 
Pj* (QD %, a, 8) = - Pf+ (- al, - a,, c, S) (j = 1, 2) 
PI* fan aa* 8, 6) = - Plf (-- a,, +, e, 8) 

Ps* f% =,, 8, 6) = pa* (-- a,; a,, 8, 6) 

(4.17) 

whose proof is similar to that of formulas (4.9) - (4. XI), are valid for solutions 
(4.15). By virtue of (4.1’7) 

PI* (a~, as, a, 6) = aj'pi (az2, azar 8, 6) (1 = 1, 2) 

where qj (Q, z9, e, 6) are analytic functions of zl, z,, e, 6 at point zI = Z, = e = 
8 = 0, and ‘pi (0, 0, 0, 0) = 0. System (4.16) has the trivial roots a, = a, = 0 

to which corresponds the odd 3E -antiperiodic solution of Eq. (4.2) q. (i, e, 6) = !I* 

(G O,O, es 61 which satisfies condition (4.12). 

At point P, we have S* (1) =0 and H(~,t+n,8,S)=H(q,t,--e,b~. By 
virtue of the last equality ps (1 + 3t, aI, a,, e, 8) = &,, (t, al, as, - E, 6) and, conoequ- 

ently, q. (t, 8, 6) = - q. (I, - e, 6), q. (t, 0, 6) = 0. Thus q. = xz for S $5 0. 
Solution q,, is the continuation of solution zz to the removable singular point PO. 

Without presenting the general analysts of system (4.16) we shall indicate its roots 
which correspond to solutions ~$1 and s!$! (r = 0,1). For aI = a f 0 and a, = 0 

that system is transformed into the equation 

Ot (a*, 9, e, 6) = 9 (4‘19) 

and function g&t, a, E, 6) = 7&, (t, a, o, a, 6) satisfies formula (4.11) by virtue of (4.17). 
Similarly system (4.16) is transformed for (I~ = 0 and a, = a # 0 into the equation 

‘Pn (0, a*, a,@ = 0 (4.19) 

and equality (4.10) holds for function q+ (t, P, e, &ii* (t, 0, a, %a) . In these cases 
the branching of periodic solutions is similar to the branching of periodic solutions at 
points of curves yl+ and yr- not coincident with points P,, and P,. Solution 

of Eq. (1.1) that correspond to roots of Eqs. (4.18) and (4.19) are, respectively, the 

solutions q;, x!;;. 
Above, we have investigated curves yI+ and y; emanating from point PO. 

It can be similarly shown that the remaining curves yr+ (Fig. 2) are branching curves 
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of the 2n -periodic solutions of Eq. (1.1) whose numerical determination reduces 
to solving the boundary value problem (2.3) which has no solution for e 4 1. 
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